
Package: predRupdate (via r-universe)
August 28, 2024

Title Prediction Model Validation and Updating

Version 0.2.0.9000

Description Evaluate the predictive performance of an existing (i.e.
previously developed) prediction/ prognostic model given
relevant information about the existing prediction model (e.g.
coefficients) and a new dataset. Provides a range of model
updating methods that help tailor the existing model to the new
dataset; see Su et al. (2018) <doi:10.1177/0962280215626466>.
Techniques to aggregate multiple existing prediction models on
the new data are also provided; see Debray et al. (2014)
<doi:10.1002/sim.6080> and Martin et al. (2018)
<doi:10.1002/sim.7586>).

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

URL https://github.com/GlenMartin31/predRupdate,

https://glenmartin31.github.io/predRupdate/

BugReports https://github.com/GlenMartin31/predRupdate/issues

Suggests covr, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Imports utils, stats, survival, pROC, ggplot2, rlang, ggpubr

Depends R (>= 2.10)

VignetteBuilder knitr

Language en-US

Repository https://glenmartin31.r-universe.dev

RemoteUrl https://github.com/glenmartin31/predrupdate

RemoteRef HEAD

RemoteSha b05218cb4444d2a65a8d0538aee23fd3e3e6c8c1

1

https://doi.org/10.1177/0962280215626466
https://doi.org/10.1002/sim.6080
https://doi.org/10.1002/sim.7586
https://github.com/GlenMartin31/predRupdate
https://glenmartin31.github.io/predRupdate/
https://github.com/GlenMartin31/predRupdate/issues

2 dummy_vars

Contents

dummy_vars . 2
inv_logit . 3
logit . 4
map_newdata . 4
pred_input_info . 6
pred_predict . 8
pred_stacked_regression . 10
pred_update . 13
pred_validate . 15
pred_val_probs . 17
SYNPM . 19

Index 21

dummy_vars Create dummy variables for all categorical/factor variables in a
data.frame

Description

Create dummy/indicator variables for all categorical variables in a data.frame. Can be used as a
pre-processing step before calling other functions within the package.

Usage

dummy_vars(df)

Arguments

df a data.frame on which to make dummy variables for each categorical/factor vari-
able, based on contrasts.

Value

a data.frame matching df but where each categorical variable in df is replaced with indicator vari-
ables. All combinations of the indicator/dummy variable are returned. Naming convention of the
new dummy variables is variable_level. For example, a factor variable in df named "colour" with
levels "red", "green" and "purple" will be replaced with three columns (the new dummy variables),
named colour_red, colour_green and colour_purple.

See Also

pred_input_info

inv_logit 3

Examples

dummy_vars(data.frame("Colour" = factor(sample(c("red",
"azure",
"green",
"white"),

500,
replace = TRUE))))

inv_logit Apply the inverse logit function to an input

Description

inv_logit applies the inverse-logit transformation (expit/ logistic function) to convert a vector of
values between -Inf and Inf, to values between 0 and 1. Used to convert the linear predictor of a
logistic regression model into a probability.

Usage

inv_logit(x)

Arguments

x Numeric vector with values between -Inf and Inf.

Value

Numeric vector of probabilities (i.e. values between 0 and 1)

See Also

logit

Examples

inv_logit(-2)
inv_logit(c(-2,-1,0,1,2))

4 map_newdata

logit Apply a logit transformation to an input

Description

logit applies the logit transformation to convert a vector of values between 0 and 1, to values
between -Inf and Inf. Used to convert a probability from a logistic regression model onto the linear
predictor scale.

Usage

logit(p)

Arguments

p Numeric vector of probabilities (i.e. values between 0 and 1) that will be trans-
formed.

Value

A numeric vector, with values between -Inf and Inf

See Also

inv_logit

Examples

logit(0.5)
logit(c(0.1, 0.2, 0.3))

map_newdata Map new data to a predinfo object

Description

This function takes a predinfo object and applies (maps) a new data to this object to check there
is consistency between the two. This function is not usually called directly, but rather within other
functions within the package, such as pred_predict.

map_newdata 5

Usage

map_newdata(
x,
new_data,
binary_outcome = NULL,
survival_time = NULL,
event_indicator = NULL

)

Arguments

x an object of class "predinfo".

new_data data.frame upon which the prediction model should be applied (for subsequent
validation/model updating/model aggregation).

binary_outcome Character variable giving the name of the column in new_data that represents
the observed binary outcomes (should be coded 0 and 1 for non-event and event,
respectively). Only relevant for model_type="logistic"; leave as NULL other-
wise. Leave as NULL if new_data does not contain any outcomes.

survival_time Character variable giving the name of the column in new_data that represents
the observed survival times. Only relevant for model_type="survival"; leave
as NULL otherwise. Leave as NULL if new_data does not contain any survival
outcomes.

event_indicator

Character variable giving the name of the column in new_data that represents
the observed survival indicator (1 for event, 0 for censoring). Only relevant for
model_type="survival"; leave as NULL otherwise. Leave as NULL if new_data
does not contain any survival outcomes.

Details

This function maps a new dataset onto a pred_info object. The new dataset might be a validation
dataset (to test the performance of the existing prediction model) and/or it might be the dataset on
which one wishes to apply model updating methods to revise the model. In any case, this should
be specified in new_data as a data.frame. Each row should be an observation (e.g. patient) and
each variable/column should be a predictor variable. The predictor variables need to include (as a
minimum) all of the predictor variables that are included in the existing prediction model (i.e., each
of the variable names supplied to pred_input_info, through the model_info parameter, must
match the name of a variables in new_data).

Any factor variables within new_data must be converted to dummy (0/1) variables before calling
this function. dummy_vars can help with this.

binary_outcome, survival_time and event_indicator are used to specify the outcome vari-
able(s) within new_data, if relevant (use binary_outcome if model_type = "logistic", or use
survival_time and event_indicator if model_type = "survival"). For example, if validating
an existing model, then these inputs specify the columns of new_data that will be used for assess-
ing predictive performance of the predictions in the validation dataset. If new_data does not contain
outcomes, then leave these inputs to the default of NULL.

6 pred_input_info

Value

Returns a list of the predinfo object, the new_data, and outcomes.

Examples

#as above, this function is not usually called directly, but an example of
#such use is:
model1 <- pred_input_info(model_type = "logistic",

model_info = SYNPM$Existing_logistic_models[1,])
map_newdata(x = model1,

new_data = SYNPM$ValidationData[1:10,],
binary_outcome = "Y")

pred_input_info Input information about an existing prediction model

Description

Input coefficient information about one or multiple existing prediction model(s), for use in other
functions in the package.

Usage

pred_input_info(
model_type = c("logistic", "survival"),
model_info,
cum_hazard = NULL

)

Arguments

model_type specifies the type of model that the existing prediction model is based on; pos-
sible options are:

• "logistic" indicates that the existing model was based on a logistic re-
gression model (default)

• "survival" indicates that the existing model was based on a survival re-
gression model

If multiple models are being entered, then all models need to be of the same type
- otherwise call function multiple times for each type of model.

model_info a data.frame that contains the coefficients of the existing prediction model(s).
Each column should be a predictor variable (with the name of the column being
the name of the predictor variable), with the values being the coefficients, taken
exactly as published from the existing prediction model(s). Multiple existing
prediction models should be specified by entering multiple rows. If a predictor
variable is not present in a given model then enter that cell of the data.frame as
NA. See examples.

pred_input_info 7

cum_hazard A data.frame with two columns: (1) time, and (2) estimated cumulative baseline
hazard at that time. The first column (time) should be named ’time’ and the
second (cumulative baseline hazard) should be named ’hazard’. Only relevant if
model_type is "survival"; leave as NULL otherwise. If multiple existing models
entered, and model_type = survival, then cum_hazard should be supplied as list
of length equal to number of models.

Details

This function will structure the relevant information about one or more existing prediction model(s)
into a standardised format, such that it can be used within other functions in the package.

First, the existing prediction model(s) will have a functional form (i.e. the linear predictor of the
model); this will be taken as being a linear combination of the variables specified by the columns
of model_info.

Second, each of the predictor variables of the existing prediction model(s) will have a published
coefficient (e.g. log-odds-ratio or log-hazard-ratio), which should each be given as the values of
model_info. If entering information about multiple existing prediction models, then model_info
will contain multiple rows (one per existing model). Here, if a given model does not contain a
predictor variable that is included in another model, then set as NA; see examples of this below.

In the case of model_type = "logistic", then model_info must contain a column named as "Inter-
cept", which gives the intercept coefficient of each of the existing logistic regression models (taken
exactly as previously published); this should be the first column of model_info.

If model_type = "survival", then the baseline cumulative hazard of the model(s) can be specified in
cum_hazard. If the baseline cumulative hazard of the existing survival model is not available, then
leave as NULL; this will limit any validation metrics that can be calculated.

Note, the column names of model_info should match columns in any new data that the exist-
ing model(s) will be applied to (i.e. any new data that will be provided to other functions within
the package should have corresponding predictor variables entered through model_info). See
pred_predict, pred_validate, pred_update and pred_stacked_regression for more infor-
mation.

Value

pred_input_info returns an object of class "predinfo", with child classes per model_type. This
is a standardised format, such that it can be used with other functions in the package. An object of
class "predinfo" is a list containing the following components:

• M = the number of existing models that information has been entered about

• model_type = this is the type of model that the existing prediction model is based upon ("lo-
gistic" or "survival")

• coefs = this is the set of (previously estimated) coefficients for each predictor variable

• coef_names = gives the names of each predictor variable

• formula = this is the functional form of the model’s linear predictor

• cum_hazard = if supplied, this is the cumulative baseline hazard of the existing model(s)

8 pred_predict

Examples

#Example 1 - logistic regression existing model
create a data.frame of the model coefficients, with columns being variables
coefs_table <- data.frame("Intercept" = -3.4,

"SexM" = 0.306,
"Smoking_Status" = 0.628,
"Diabetes" = 0.499,
"CKD" = 0.538)

#pass this into pred_input_info()
Existing_Logistic_Model <- pred_input_info(model_type = "logistic",

model_info = coefs_table)
summary(Existing_Logistic_Model)

#Example 2 - survival model example; uses an example dataset within the
package.
pred_input_info(model_type = "survival",

model_info = SYNPM$Existing_TTE_models[2,],
cum_hazard = SYNPM$TTE_mod2_baseline)

#Example 3 - Input information about multiple models
summary(pred_input_info(model_type = "logistic",

model_info = SYNPM$Existing_logistic_models))

pred_predict Make predictions from an existing prediction model

Description

Use an existing prediction model to estimate predicted risks of the outcome for each observation in
a new dataset.

Usage

pred_predict(
x,
new_data,
binary_outcome = NULL,
survival_time = NULL,
event_indicator = NULL,
time_horizon = NULL

)

Arguments

x an object of class "predinfo" produced by calling pred_input_info.

new_data data.frame upon which predictions are obtained using the prediction model.

pred_predict 9

binary_outcome Character variable giving the name of the column in new_data that represents
the observed binary outcomes (should be coded 0 and 1 for non-event and event,
respectively). Only relevant for model_type="logistic"; leave as NULL other-
wise. Leave as NULL if new_data does not contain any outcomes.

survival_time Character variable giving the name of the column in new_data that represents
the observed survival times. Only relevant for model_type="survival"; leave
as NULL otherwise. Leave as NULL if new_data does not contain any survival
outcomes.

event_indicator

Character variable giving the name of the column in new_data that represents
the observed survival indicator (1 for event, 0 for censoring). Only relevant for
model_type="survival"; leave as NULL otherwise. Leave as NULL if new_data
does not contain any survival outcomes.

time_horizon for survival models, an integer giving the time horizon (post baseline) at which a
prediction is required (i.e. the t at which P(T<t) should be estimated). Currently,
this must match a time in x$cum_hazard. If left as NULL, no predicted risks
will be returned, just the linear predictor.

Details

This function takes the relevant information about the existing prediction model (as supplied by
calling pred_input_info), and returns the linear predictor and predicted risks for each individ-
ual/observation in new_data.

If the existing prediction model is based on logistic regression (i.e., if x$model_type == "logistic"),
the predicted risks will be the predicted probability of the binary outcome conditional on the pre-
dictor variables in the new data (i.e., P(Y=1 | X)). If the existing prediction model is based on a
time-to-event/survival model (i.e., if x$model_type == "survival"), the predicted risks can only be
calculated if a baseline cumulative hazard is provided; in this case, the predicted risks will be one
minus the survival probability (i.e., 1 - S(T>time horizon | X)).

new_data should be a data.frame, where each row should be an observation (e.g. patient) and
each variable/column should be a predictor variable. The predictor variables need to include (as
a minimum) all of the predictor variables that are included in the existing prediction model (i.e.,
each of the variable names supplied to pred_input_info, through the model_info parameter,
must match the name of a variables in new_data). Any factor variables within new_data must be
converted to dummy (0/1) variables before calling this function. dummy_vars can help with this.
See examples.

binary_outcome, survival_time and event_indicator are used to specify the outcome vari-
able(s) within new_data (use binary_outcome if x$model_type = "logistic", or use survival_time
and event_indicator if x$model_type = "survival").

Value

pred_predict returns a list containing the following components:

• LinearPredictor = the linear predictor for each observation in the new data (i.e., the linear
combination of the models predictor variables and their corresponding coefficients)

• PredictedRisk = the predicted risk for each observation in the new data

10 pred_stacked_regression

• TimeHorizon = for survival models, an integer giving the time horizon at which a prediction
is made

• Outcomes = vector of outcomes/endpoints (if available).

See Also

pred_input_info

Examples

#Example 1 - logistic regression existing model - shows handling of factor variables
coefs_table <- data.frame("Intercept" = -3.4,

"Sex_M" = 0.306,
"Smoking_Status" = 0.628)

existing_Logistic_Model <- pred_input_info(model_type = "logistic",
model_info = coefs_table)

new_df <- data.frame("Sex" = as.factor(c("M", "F", "M", "M", "F", "F", "M")),
"Smoking_Status" = c(1, 0, 0, 1, 1, 0, 1))

#new_df has a factor variable, so needs indicator variables creating before pred_predict:
new_df_indicators <- dummy_vars(new_df)
pred_predict(x = existing_Logistic_Model,

new_data = new_df_indicators)

#Example 2 - survival model example; uses an example dataset within the
package. Multiple existing models
model2 <- pred_input_info(model_type = "survival",

model_info = SYNPM$Existing_TTE_models,
cum_hazard = list(SYNPM$TTE_mod1_baseline,

SYNPM$TTE_mod2_baseline,
SYNPM$TTE_mod3_baseline))

pred_predict(x = model2,
new_data = SYNPM$ValidationData[1:10,],
survival_time = "ETime",
event_indicator = "Status",
time_horizon = 5)

pred_stacked_regression

Perform Stacked Regression on Existing Prediction Models

Description

This function takes a set of existing prediction models, and uses the new dataset to combine/aggregate
them into a single ’meta-model’, as described in Debray et al. 2014.

pred_stacked_regression 11

Usage

pred_stacked_regression(
x,
positivity_constraint = FALSE,
new_data,
binary_outcome = NULL,
survival_time = NULL,
event_indicator = NULL

)

Arguments

x an object of class "predinfo" produced by calling pred_input_info contain-
ing information on at least two existing prediction models.

positivity_constraint

TRUE/FALSE denoting if the weights within the stacked regression model should
be constrained to be non-negative (TRUE) or should be allowed to take any value
(FALSE). See details.

new_data data.frame upon which the prediction models should be aggregated.

binary_outcome Character variable giving the name of the column in new_data that represents
the observed binary outcomes (should be coded 0 and 1 for non-event and event,
respectively). Only relevant for model_type="logistic"; leave as NULL other-
wise. Leave as NULL if new_data does not contain any outcomes.

survival_time Character variable giving the name of the column in new_data that represents
the observed survival times. Only relevant for x$model_type="survival"; leave
as NULL otherwise.

event_indicator

Character variable giving the name of the column in new_data that represents
the observed survival indicator (1 for event, 0 for censoring). Only relevant for
x$model_type="survival"; leave as NULL otherwise.

Details

This function takes a set of (previously estimated) prediction models that were each originally
developed for the same prediction task, and pool/aggregate these into a single prediction model
(meta-model) using stacked regression based on new data (data not used to develop any of the
existing models). The methodological details can be found in Debray et al. 2014.

Given that the existing models are likely to be highly co-linear (since they were each developed for
the same prediction task), it has been suggested to impose a positivity constraint on the weights of
the stacked regression model (Debray et al. 2014.). If positivity_constraint is set to TRUE,
then the stacked regression model will be estimated by optimising the (log-)likelihood using bound
constrained optimization ("L-BFGS-B"). This is currently only implemented for logistic regression
models (i.e., if x$model_type="logistic"). For survival models, positivity_constraint = FALSE.

new_data should be a data.frame, where each row should be an observation (e.g. patient) and
each variable/column should be a predictor variable. The predictor variables need to include (as
a minimum) all of the predictor variables that are included in the existing prediction models (i.e.,

12 pred_stacked_regression

each of the variable names supplied to pred_input_info, through the model_info parameter, must
match the name of a variables in new_data).

Any factor variables within new_data must be converted to dummy (0/1) variables before calling
this function. dummy_vars can help with this. See pred_predict for examples.

binary_outcome, survival_time and event_indicator are used to specify the outcome vari-
able(s) within new_data (use binary_outcome if x$model_type = "logistic", or use survival_time
and event_indicator if x$model_type = "survival").

Value

A object of class "predSR". This is the same as that detailed in pred_input_info, with the added
element containing the estimates of the meta-model obtained by stacked regression.

References

Debray, T.P., Koffijberg, H., Nieboer, D., Vergouwe, Y., Steyerberg, E.W. and Moons, K.G. (2014),
Meta-analysis and aggregation of multiple published prediction models. Statistics in Medicine, 33:
2341-2362

See Also

pred_input_info

Examples

LogisticModels <- pred_input_info(model_type = "logistic",
model_info = SYNPM$Existing_logistic_models)

SR <- pred_stacked_regression(x = LogisticModels,
new_data = SYNPM$ValidationData,
binary_outcome = "Y")

summary(SR)

#Survival model example:
TTModels <- pred_input_info(model_type = "survival",

model_info = SYNPM$Existing_TTE_models,
cum_hazard = list(SYNPM$TTE_mod1_baseline,

SYNPM$TTE_mod2_baseline,
SYNPM$TTE_mod3_baseline))

SR <- pred_stacked_regression(x = TTModels,
new_data = SYNPM$ValidationData,
survival_time = "ETime",
event_indicator = "Status")

summary(SR)

pred_update 13

pred_update Perform Model Updating on an Existing Prediction Model

Description

This function takes an existing (previously developed) prediction model and applies various model
updating methods to tailor/adapt it to a new dataset. Various levels of updating are possible, ranging
from model re-calibration to model refit.

Usage

pred_update(
x,
update_type = c("intercept_update", "recalibration", "refit"),
new_data,
binary_outcome = NULL,
survival_time = NULL,
event_indicator = NULL

)

Arguments

x an object of class "predinfo" produced by calling pred_input_info contain-
ing information on exactly one existing prediction model.

update_type character variable specifying the level of updating that is required.

new_data data.frame upon which the prediction models should be updated.

binary_outcome Character variable giving the name of the column in new_data that represents
the observed binary outcomes (should be coded 0 and 1 for non-event and event,
respectively). Only relevant for model_type="logistic"; leave as NULL other-
wise. Leave as NULL if new_data does not contain any outcomes.

survival_time Character variable giving the name of the column in new_data that represents
the observed survival times. Only relevant for x$model_type="survival"; leave
as NULL otherwise.

event_indicator

Character variable giving the name of the column in new_data that represents
the observed survival indicator (1 for event, 0 for censoring). Only relevant for
x$model_type="survival"; leave as NULL otherwise.

Details

This function takes a single existing (previously estimated) prediction model, and apply various
model discrete model updating methods (see Su et al. 2018) to tailor the model to a new dataset.

The type of updating method is selected with the update_type parameter, with options: "inter-
cept_update", "recalibration" and "refit". "intercept_update" corrects the overall calibration-in-the-
large of the model, through altering the model intercept (or baseline hazard) to suit the new dataset.

14 pred_update

This is achieved by fitting a logistic model (if the existing model is of type logistic) or time-to-
event model (if the existing model if of type survival) to the new dataset, with the linear predictor
as the only covariate, with the coefficient fixed at unity (i.e. as an offset). "recalibration" corrects
the calibration-in-the-large and any under/over-fitting, by fitting a logistic model (if the existing
model is of type logistic) or time-to-event model (if the existing model if of type survival) to the
new dataset, with the linear predictor as the only covariate. Finally, "refit" takes the original model
structure and re-estimates all coefficients; this has the effect as re-developing the original model in
the new data.

new_data should be a data.frame, where each row should be an observation (e.g. patient) and
each variable/column should be a predictor variable. The predictor variables need to include (as a
minimum) all of the predictor variables that are included in the existing prediction model (i.e., each
of the variable names supplied to pred_input_info, through the model_info parameter, must
match the name of a variables in new_data).

Any factor variables within new_data must be converted to dummy (0/1) variables before calling
this function. dummy_vars can help with this. See pred_predict for examples.

binary_outcome, survival_time and event_indicator are used to specify the outcome vari-
able(s) within new_data (use binary_outcome if x$model_type = "logistic", or use survival_time
and event_indicator if x$model_type = "survival").

Value

A object of class "predUpdate". This is the same as that detailed in pred_input_info, with the
added element containing the estimates of the model updating and the update type.

References

Su TL, Jaki T, Hickey GL, Buchan I, Sperrin M. A review of statistical updating methods for clinical
prediction models. Stat Methods Med Res. 2018 Jan;27(1):185-197. doi: 10.1177/0962280215626466.

See Also

pred_input_info

Examples

#Example 1 - update time-to-event model by updating the baseline hazard in new dataset
model1 <- pred_input_info(model_type = "survival",

model_info = SYNPM$Existing_TTE_models[1,],
cum_hazard = SYNPM$TTE_mod1_baseline)

recalibrated_model1 <- pred_update(x = model1,
update_type = "intercept_update",
new_data = SYNPM$ValidationData,
survival_time = "ETime",
event_indicator = "Status")

summary(recalibrated_model1)

pred_validate 15

pred_validate Validate an existing prediction

Description

Validate an existing prediction model, to calculate the predictive performance against a new (vali-
dation) dataset.

Usage

pred_validate(
x,
new_data,
binary_outcome = NULL,
survival_time = NULL,
event_indicator = NULL,
time_horizon = NULL,
level = 0.95,
cal_plot = TRUE,
...

)

Arguments

x an object of class "predinfo" produced by calling pred_input_info.

new_data data.frame upon which the prediction model should be evaluated.

binary_outcome Character variable giving the name of the column in new_data that represents
the observed binary outcomes (should be coded 0 and 1 for non-event and event,
respectively). Only relevant for model_type="logistic"; leave as NULL other-
wise. Leave as NULL if new_data does not contain any outcomes.

survival_time Character variable giving the name of the column in new_data that represents
the observed survival times. Only relevant for x$model_type="survival"; leave
as NULL otherwise.

event_indicator

Character variable giving the name of the column in new_data that represents
the observed survival indicator (1 for event, 0 for censoring). Only relevant for
x$model_type="survival"; leave as NULL otherwise.

time_horizon for survival models, an integer giving the time horizon (post baseline) at which
a prediction is required. Currently, this must match a time in x$cum_hazard.

level the confidence level required for all performance metrics. Defaults at 95%. Must
be a value between 0 and 1.

cal_plot indicate if a flexible calibration plot should be produced (TRUE) or not (FALSE).

... further plotting arguments for the calibration plot. See Details below.

16 pred_validate

Details

This function takes an existing prediction model formatted according to pred_input_info, and
calculates measures of predictive performance on new data (e.g., within an external validation
study). The information about the existing prediction model should first be inputted by calling
pred_input_info, before passing the resulting object to pred_validate.

new_data should be a data.frame, where each row should be an observation (e.g. patient) and
each variable/column should be a predictor variable. The predictor variables need to include (as a
minimum) all of the predictor variables that are included in the existing prediction model (i.e., each
of the variable names supplied to pred_input_info, through the model_info parameter, must
match the name of a variables in new_data).

Any factor variables within new_data must be converted to dummy (0/1) variables before calling
this function. dummy_vars can help with this. See pred_predict for examples.

binary_outcome, survival_time and event_indicator are used to specify the outcome vari-
able(s) within new_data (use binary_outcome if x$model_type = "logistic", or use survival_time
and event_indicator if x$model_type = "survival").

In the case of validating a logistic regression model, this function assesses the predictive perfor-
mance of the predicted risks against an observed binary outcome. Various metrics of calibration
(agreement between the observed risk and the predicted risks, across the full risk range) and dis-
crimination (ability of the model to distinguish between those who develop the outcome and those
who do not) are calculated. For calibration, the observed-to-expected ratio, calibration intercept and
calibration slopes are estimated. The calibration intercept is estimated by fitting a logistic regres-
sion model to the observed binary outcomes, with the linear predictor of the model as an offset. For
calibration slope, a logistic regression model is fit to the observed binary outcome with the linear
predictor from the model as the only covariate. For discrimination, the function estimates the area
under the receiver operating characteristic curve (AUC). Various other metrics are also calculated
to assess overall accuracy (Brier score, Cox-Snell R2).

In the case of validating a survival prediction model, this function assesses the predictive perfor-
mance of the linear predictor and (optionally) the predicted event probabilities at a fixed time hori-
zon against an observed time-to-event outcome. Various metrics of calibration and discrimination
are calculated. For calibration, the observed-to-expected ratio at the specified time_horizon (if
predicted risks are available through specification of x$cum_hazard) and calibration slope are pro-
duced. For discrimination, Harrell’s C-statistic is calculated.

For both model types, a flexible calibration plot is produced (for survival models, the cumulative
baseline hazard must be available in the predinfo object, x$cum_hazard). Specify parameter
cal_plot to indicate whether a calibration plot should be produced (TRUE), or not (FALSE). The
calibration plot is produced by regressing the observed outcomes against a cubic spline of the logit
of predicted risks (for a logistic model) or the complementary log-log of the predicted risks (for
a survival model). Users can specify the following additional parameters to pred_validate to
modify the calibration plot:

• xlim as a numeric vector of length 2, giving the lower and upper range of the x-axis scale -
defaults at 0 and 1. Changes here should match changes to the ylim such that the plot remains
’square’.

• ylim as a numeric vector of length 2, giving the lower and upper range of the y-axis scale -
defaults at 0 and 1. Changes here should match changes to the xlim such that the plot remains
’square’.

pred_val_probs 17

• xlab string giving the x-axis label. Defaults as "Predicted Probability".

• ylab string giving the x-axis label. Defaults as "Observed Probability".

• pred_rug TRUE/FALSE of whether a ’rug’ should be placed along the x-axis of the calibra-
tion plot showing the distribution of predicted risks. Defaults as FALSE in favour of examining
the box-plot/violin plot that is produced.

• cal_plot_n_sample numeric value (less than nrow(new_data)) giving a random subset of
observations to render the calibration plot over. The calibration plot is always created using
all data, but for rendering speed in large datasets, it can sometimes be useful to render the plot
over a smaller (random) subset of observations. Final (e.g. publication-ready) plots should
always show the full plot, so a warning is created if users enter a value of cal_plot_n_sample.

Value

pred_validate returns an object of class "predvalidate", with child classes per model_type.
This is a list of performance metrics, estimated by applying the existing prediction model to the
new_data. An object of class "predvalidate" is a list containing relevant calibration and dis-
crimination measures. For logistic regression models, this will include observed:expected ratio,
calibration-intercept, calibration slope, area under the ROC curve, R-squared, and Brier Score. For
survival models, this will include observed:expected ratio (if cum_hazard is provided to x), calibra-
tion slope, and Harrell’s C-statistic. Optionally, a flexible calibration plot is also produced, along
with a box-plot and violin plot of the predicted risk distribution.

The summary function can be used to extract and print summary performance results (calibration and
discrimination metrics). The graphical assessments of performance can be extracted using plot.

See Also

pred_input_info

Examples

#Example 1 - multiple existing model, with outcome specified; uses
an example dataset within the package
model1 <- pred_input_info(model_type = "logistic",

model_info = SYNPM$Existing_logistic_models)
val_results <- pred_validate(x = model1,

new_data = SYNPM$ValidationData,
binary_outcome = "Y",
cal_plot = FALSE)

summary(val_results)

pred_val_probs Validate Predicted Probabilities

18 pred_val_probs

Description

This function is included for situations where one has a vector of predicted probabilities from a
model and a vector of observed binary outcomes that we wish to validate the predictions against.
See pred_validate for the main validation function of this package.

Usage

pred_val_probs(binary_outcome, Prob, cal_plot = TRUE, level = 0.95, ...)

Arguments

binary_outcome vector of binary outcomes (coded as 1 if outcome happened, and 0 otherwise).
Must be of same length as Prob

Prob vector of predicted probabilities. Must be of same length of binary_outcome.

cal_plot indicate if a flexible calibration plot should be produced (TRUE) or not (FALSE).

level the confidence level required for all performance metrics. Defaults at 95%. Must
be a value between 0 and 1.

... further plotting arguments for the calibration plot. See Details below.

Details

This function takes a vector of observed binary outcomes, and a corresponding vector of predicted
risks (e.g. from a logistic regression CPM), and calculates measures of predictive performance.
The function is intended as a standalone way of validating predicted risks against binary outcomes
outside of the usual pred_input_info() -> pred_validate() package workflow. See pred_validate
for the main validation function of this package.

Various metrics of calibration (agreement between the observed risk and the predicted risks, across
the full risk range) and discrimination (ability of the model to distinguish between those who de-
velop the outcome and those who do not) are calculated. For calibration, the observed-to-expected
ratio, calibration intercept and calibration slopes are estimated. The calibration intercept is esti-
mated by fitting a logistic regression model to the observed binary outcomes, with the linear predic-
tor of the model as an offset. For calibration slope, a logistic regression model is fit to the observed
binary outcome with the linear predictor from the model as the only covariate. For discrimination,
the function estimates the area under the receiver operating characteristic curve (AUC). Various
other metrics are also calculated to assess overall accuracy (Brier score, Cox-Snell R2).

A flexible calibration plot is produced. Specify parameter cal_plot to indicate whether a calibra-
tion plot should be produced (TRUE), or not (FALSE). See pred_validate for details on this plot,
and details of optional plotting arguments.

Value

An object of class "predvalidate", which is a list containing relevant calibration and discrimina-
tion measures. See pred_validate for details.

See Also

pred_input_info, pred_validate

SYNPM 19

Examples

simulate some data for purposes of example illustration
set.seed(1234)
x1 <- rnorm(2000)
LP <- -2 + (0.5*x1)
PR <- 1/(1+exp(-LP))
y <- rbinom(2000, 1, PR)

#fit hypothetical model to the simulated data
mod <- glm(y[1:1000] ~ x1[1:1000], family = binomial(link="logit"))

#obtain the predicted risks from the model
pred_risk <- predict(mod, type = "response",

newdata = data.frame("x1" = x1[1001:2000]))

#Use pred_val_probs to validate the predicted risks against the
#observed outcomes
summary(pred_val_probs(binary_outcome = y[1001:2000],

Prob = pred_risk,
cal_plot = FALSE))

SYNPM SYNthetic Prediction Models (SYNPM) and Validation dataset

Description

A list containing: (1) information on some (synthetic) existing prediction models (representing
those available/published, which we want to validate in another independent dataset); and (2) a
synthetic dataset that we wish to validate/update the models on.

Usage

SYNPM

Format

A list with six elements.

1. The first element is a data frame with the information about three existing binary (logistic
regression) models for a binary outcome at one year

2. The second element is a data frame with the information about three existing time-to-event
(Cox) models for the time-to-event outcome

3. The third, fourth and fifth elements are the cumulative baseline hazard information for the
three time-to-event model

4. The sixth element is the (synthetic) validation dataset on which we want to validate the existing
models. The dataset has 20000 rows and 8 variables:

Age The age of the individual at baseline

20 SYNPM

SexM The sex of the individual (1 = male; 0 = female)
Smoking_Status Indicates whether the individual was or is a smoker (1=previous/ current

smoker, 0=non-smoker)
Diabetes Indicates whether the individual has diabetes (1=diabetic, 0=not diabetic)
Creatinine The Creatinine value for the individual (mg/dL)
ETime The time from baseline until either the event or censoring
Status Indicator of whether the patient experienced the event or was censored at ETime
Y Binary indicator of whether the individual experienced the event by 1 time-unit

Source

Simulated Data; see https://github.com/GlenMartin31/predRupdate

https://github.com/GlenMartin31/predRupdate

Index

∗ datasets
SYNPM, 19

dummy_vars, 2, 5, 9, 12, 14, 16

inv_logit, 3, 4

logit, 3, 4

map_newdata, 4

pred_input_info, 2, 5, 6, 7–18
pred_predict, 7, 8, 9, 12, 14, 16
pred_stacked_regression, 7, 10
pred_update, 7, 13
pred_val_probs, 17
pred_validate, 7, 15, 16–18

SYNPM, 19

21

	dummy_vars
	inv_logit
	logit
	map_newdata
	pred_input_info
	pred_predict
	pred_stacked_regression
	pred_update
	pred_validate
	pred_val_probs
	SYNPM
	Index

