Package: predRupdate 0.2.0.9000
predRupdate: Prediction Model Validation and Updating
Evaluate the predictive performance of an existing (i.e. previously developed) prediction/ prognostic model given relevant information about the existing prediction model (e.g. coefficients) and a new dataset. Provides a range of model updating methods that help tailor the existing model to the new dataset; see Su et al. (2018) <doi:10.1177/0962280215626466>. Techniques to aggregate multiple existing prediction models on the new data are also provided; see Debray et al. (2014) <doi:10.1002/sim.6080> and Martin et al. (2018) <doi:10.1002/sim.7586>).
Authors:
predRupdate_0.2.0.9000.tar.gz
predRupdate_0.2.0.9000.zip(r-4.5)predRupdate_0.2.0.9000.zip(r-4.4)predRupdate_0.2.0.9000.zip(r-4.3)
predRupdate_0.2.0.9000.tgz(r-4.4-any)predRupdate_0.2.0.9000.tgz(r-4.3-any)
predRupdate_0.2.0.9000.tar.gz(r-4.5-noble)predRupdate_0.2.0.9000.tar.gz(r-4.4-noble)
predRupdate_0.2.0.9000.tgz(r-4.4-emscripten)predRupdate_0.2.0.9000.tgz(r-4.3-emscripten)
predRupdate.pdf |predRupdate.html✨
predRupdate/json (API)
NEWS
# Install 'predRupdate' in R: |
install.packages('predRupdate', repos = c('https://glenmartin31.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/glenmartin31/predrupdate/issues
- SYNPM - SYNthetic Prediction Models (SYNPM) and Validation dataset
Last updated 3 months agofrom:b05218cb44. Checks:OK: 6 ERROR: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 27 2024 |
R-4.5-win | ERROR | Oct 27 2024 |
R-4.5-linux | OK | Oct 27 2024 |
R-4.4-win | OK | Oct 27 2024 |
R-4.4-mac | OK | Oct 27 2024 |
R-4.3-win | OK | Oct 27 2024 |
R-4.3-mac | OK | Oct 27 2024 |
Exports:dummy_varsinv_logitlogitmap_newdatapred_input_infopred_predictpred_stacked_regressionpred_updatepred_val_probspred_validate
Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecorrplotcowplotcpp11DerivdoBydplyrfansifarverFormulagenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigplyrpolynompROCpurrrquantregR6RColorBrewerRcppRcppEigenrlangrstatixscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr
Introduction to the predRupdate package
Rendered frompredRupdate.Rmd
usingknitr::rmarkdown
on Oct 27 2024.Last update: 2024-08-23
Started: 2023-03-31
Example of Validating a Model that Includes Spline Terms
Rendered frompredRupdate_splineIllustration.Rmd
usingknitr::rmarkdown
on Oct 27 2024.Last update: 2023-11-20
Started: 2023-11-20
Technical Background to predRupdate
Rendered frompredRupdate_technical.Rmd
usingknitr::rmarkdown
on Oct 27 2024.Last update: 2023-04-26
Started: 2023-03-31
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Create dummy variables for all categorical/factor variables in a data.frame | dummy_vars |
Apply the inverse logit function to an input | inv_logit |
Apply a logit transformation to an input | logit |
Map new data to a predinfo object | map_newdata |
Input information about an existing prediction model | pred_input_info |
Make predictions from an existing prediction model | pred_predict |
Perform Stacked Regression on Existing Prediction Models | pred_stacked_regression |
Perform Model Updating on an Existing Prediction Model | pred_update |
Validate Predicted Probabilities | pred_val_probs |
Validate an existing prediction | pred_validate |
SYNthetic Prediction Models (SYNPM) and Validation dataset | SYNPM |